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Introduction 

 As the penetration of PV increases on the distribution system, 
there is rising concern about the interaction between PV 
variability and the system voltage regulation equipment. 

 The impact of PV variability on voltage regulation equipment 
is separated into two categories: 
 The short-term variability can occur faster than the voltage regulation 

equipment, such as on-load tap changer (OLTC), can react, which 
causes extreme transient voltages during the PV ramp.   

 The long-term variability with frequent fluctuations in PV output can 
increase the number of total tap changes, leading to quicker 
degradation of equipment. 

 Develop methods for analyzing this impact quickly and 
efficiently for interconnection screening 
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Background 

 Load Tap Changers (LTCs) and Voltage Regulators (VREGS) 
 Regulate the voltage by changing the tap of a transformer while 

maintaining current flow 

 Changes taps to keep the output voltage at the VREG setpoint within a 
certain bandwidth 

 Time delay (generally 30 to 60 seconds) from the voltage going out of 
band until the control action 

 Tap changes create wear and tear on the device 

 Quasi-static time series (QSTS) power flow analysis 
 Captures time-dependent aspects of power flow, including the 

interaction between the daily changes in load and PV output 
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Short-Term PV Variability 
 Extreme Ramp Analysis 
 Extreme ramps in PV output can cause voltage issues before 

the end of the delay time when the tap change returns the 
voltage to normal range 
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Extreme Voltages During Ramp 

 

 

 

 

 

 

 

 

 

 Detect any issues from PV ramps with QSTS simulation of the 
PV output profile for the year for all PV ramps 
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PV Ramp Up Analysis 

 New method for simulating issues from extreme PV ramps 
 Only simulate the worst case ramp, top 0.1% of 1-minute ramps 

 Do not need to simulate the whole ramp, just the top and bottom 
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Voltage Controls Acting During Solve Voltage Controls Locked During Solve
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PV Ramp Down Analysis 
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Long-Term PV Variability 
 Tap Change Analysis 

 

 Voltage regulators were 
designed for slow daily 
variability in load, not the 
high variability from PV 

 High penetrations of PV on 
the feeder can increase the 
number of tap changes, and 
degradation of the 
equipment 
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Complexity of Modeling Tap Changes 

 High resolution data with appropriate local load and solar 
variability 

 Modelling regulator controls 

 Interaction between smart inverters and regulator load drop 
compensator control 
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LTC Operations by Month 

PV Impact to Tap Changes  
 Variation by Time of Year 



Conventional Simulation Method 

 The number of tap changes is simulated using QSTS 

 Must have accurate high resolution data, and simulate long 
time periods to account for seasonal changes 

 A 1-second resolution QSTS simulation for a 1 year period 
takes about 24 hours of computation 

 To improve the interconnection process, a faster method is 
required 

 Simple criteria like the ability of PV to force a tap change does 
not capture the full picture 
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New way to Simulate Tap Position 

 Regulator tap position 
can be determined as a 
function of PV output 
and feeder load 

 Using this function and 
the annual load and PV 
profiles, the tap can be 
determined for every 
time point in the year 
along with the total 
number of tap changes 
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Regulator Previous State 

 Cannot just use the tap position function because regulator 
controls are also dependent on their previous state 

 Whether a tap change actually occurs is due to the delay time 
and the control logic 
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Simulate Tap Position Using Voltage 

 Model the high-side voltage of the regulator as a function of 
load and PV output 
 Determine heuristically testing combinations of load and PV values 

 Calculate using power transfer distribution factors (PTDF’s) 

 Analyze the tap position through time, modeling all delays 
and keeping downstream voltage within band 
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Conclusions 

 Two methods are proposed for screening potential PV systems 
for adverse impacts of PV variability on the distribution system 
without using time-series simulations.  

 First, a technique to accurately characterize extreme feeder 
voltages due to high PV ramp rates is demonstrated using voltage 
regulation equipment locking and expected extreme PV ramping 
scenarios.  

 Second, a method is described to determine the potential impact 
of a PV system on regulator tap changes using a voltage function 
to model the tap position throughout an entire year.  

 Each of these methods aids in decreasing the complexity and 
length of time involved in screening potential PV 
interconnections.  
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Questions? 
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PV Impact to Tap Changes 
 Variation with Irradiance Data 



PV Impact to Tap Changes 
 Variation by Location 
 Percent increase in tap operations depending on the 

interconnection location along the length of the main 3-phase 
trunk 
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Background on QSTS 

 PV output is highly variable and the potential interaction with 
control systems may not be adequately analyzed with 
traditional snapshot tools and methods 

 Quasi-static time series (QSTS) power flow analysis 
 Captures time-dependent aspects of power flow, including the 

interaction between the daily changes in load and PV output 

 Simulation performed in OpenDSS 
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